COMBINING ITS SOLUTIONS FOR TRAFFIC IMPACT MITIGATIONS:
AN APPLICATION TO A CASE STUDY IN NAPLES

S. de Luca¹, R. Di Pace¹, S. Memoli², L. Pariota³
¹Dep. of Civil Engineering, University of Salerno, Fisciano (SA), Italy
²Dep. of Mobility, Infrastructures and Public works, Municipality of Naples, Naples – Italy
³Dep. of Civil, Arc. and Env. Eng. University of Naples “Federico II” Naples – Italy
Background

- ITS solutions to alleviate traffic congestion
- Traffic Control
- Route guidance
- Unified Framework
 - Bi-level vs Simultaneous approaches
2. Research objectives
Research objectives

- **Traffic Control**
 - to propose a solution method suitable for traffic responsive applications (dynamic traffic conditions)

- **Route guidance**
 - 1) to use real time information
 - 2) to respond to route enquires (requirement of real time reaction)

- **Unified (simultaneous) Traffic Management Framework (TMF)**
Main contributions

- **Methodological**
 - DTA models
 - Analytical based vs Simulation based
 - On-line implementation

- **Operational**
 - The unified TMF is tested on the platform of Simulation of Urban MObility (SUMO)
TMF overview

2.3

✓ rerouting
✓ route guidance

traffic signal controllers

gating controllers
3. Methodological Framework

3.1 Dynamic Traffic Management
 - Network Traffic Control
 - Traffic Flow Modelling
 - Rolling Horizon prediction model

3.2 Feedback based gating (perimeter) control

3.3 Route guidance
3.1.1 Network Traffic Control

Synchronisation
Flow based strategies

- Fixed timing plans
- Timing plans selection
- Timing plans computation
On-line Traffic Control

3.1.1
Synchronisation

- Stage matrix
- Decision variables
- Green timings
- Offsets

- Objectives function
 - Mono-criterion: TD minimisation (TFM)

- Solution Algorithm
 - Simulated Annealing
3.1.2 Traffic Flow Modelling

CT&PDM
Traffic Flow Model: PDM

3.1.2

\[q_{sh}(i+\Delta i) = Fq_{li}(i) + (1-F)q_{sh}(i+\Delta i-i) \]

\[\Delta i = 0.8 \cdot t_{lh} \]

\[F = 1/(1+0.4 \cdot t_{lh}) \]
Traffic Flow Model: CTM/CT&PDM

i : cell index
n_i : is the number of vehicles on the cell i
Q_i : is the maximum flow rate in cell i
d_i : is the wave speed coefficient of cell i
N_i : is the maximum number of vehicles present in the cell i
t : time slot index (clock tick)

\[
S_i(t) = \min\{Q_i, n_i\} - R_i(t) = \min\{Q_i, d_i[N_i - n_i]\}
\]

\[
Y_i(t) = \min\{S_i(t), R_{i+1}(t)\}
\]

*speed-density relationship (Underwood):

\[
X_i(t) = k_i(t) v_0 \exp[-0.5(k_i(t)/\text{km})^2]
\]

\[
Y_i(t) = \min\{S_i(t), R_{i+1}(t), X_i(t)\}
\]
3.1.3 Rolling Horizon Prediction Model
Kalman filter methodology

3.1.3

- rolling horizon
3.2 Gating Control
Gating (Perimeter) Control

- Gating task
 - to hold vehicles back upstream of a “protected network (PN)” such that the accumulation does not exceed the critical value in order to maximize the outflow (input flow metering)

- Feedback controller
 - Occupancy desired set-point
4. Route guidance
Route guidance

- Congested roads prediction \rightarrow alternative paths identification
 (vehicle rerouting, route guidance)

- Forecast traffic congestion

- Drivers’ reaction to the information
 - All vehicles report the information to the central ITS server
 (current position, destination and route to destination)
 - Constrained to TF composition (connected vehicles)

- Simulation based approach
Drivers’ reaction to the information

- Compliance modelling (Accuracy of Information)
- Holding model (MMNL-error components)

5. Numerical Results
Case study

City centre of Naples

via Francesco Caracciolo and via Riviera di Chiaia

The most used connection is the Vittoria urban tunnel

SUMO:
calibrated (macro) and validated
- two kinds of point measures collected through loop detectors and manual existing traffic flows (link flows), traffic counts;
- travel times and queue location and lengths.
Scenarios

- (Scenario 1) Traffic control:
 - 1.1 Single junction
 - 1.2 Synchronisation
 - 1.3 Synchronisation (Synchr) + Gating control (GC)

- (Scenario 2) Traffic control + Information:
 - 2.1 Synchr + GC + with rerouting (Vittoria tunnel closed)
 - 2.2 Synchr + GC + with ‘explicit’ compliance (rates)
 - 2.3 Synchr + GC + with ‘implicit’ compliance
Results analysis (1)

Performance indicators (for each section):
- PTTs [min]
- QLs [m]

<table>
<thead>
<tr>
<th>Scenario</th>
<th>PATHS [%]</th>
<th>Scen 1</th>
<th>Scen 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>19.72</td>
<td>-1.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15.94</td>
<td>11.19</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-9.96</td>
<td>-23.43</td>
</tr>
<tr>
<td>4</td>
<td>13.85</td>
<td>18.01</td>
<td>-1.82</td>
</tr>
<tr>
<td>5</td>
<td>(80)</td>
<td>(60)</td>
<td>(40)</td>
</tr>
<tr>
<td>6</td>
<td>30.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4: rerouting scenario
Results analysis (2)

Performance indicators (for each section):
PTTs [min]
QLs [m]

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.4%</td>
<td>-10.3%</td>
<td>-0.5%</td>
<td>25.8%</td>
<td>10.7%</td>
</tr>
<tr>
<td>3</td>
<td>26.2%</td>
<td>23.3%</td>
<td>-0.3%</td>
<td>56.0%</td>
<td>30.9%</td>
</tr>
<tr>
<td>4</td>
<td>7.0%</td>
<td>5.4%</td>
<td>16.9%</td>
<td>-19.1%</td>
<td>9.7%</td>
</tr>
<tr>
<td>5</td>
<td>8.6%</td>
<td>4.4%</td>
<td>0.1%</td>
<td>44.0%</td>
<td>4.6%</td>
</tr>
<tr>
<td>6</td>
<td>8.8%</td>
<td>6.7%</td>
<td>5.8%</td>
<td>80.9%</td>
<td>61.9%</td>
</tr>
</tbody>
</table>

4: rerouting scenario
Concluding Remarks & Future Perspectives
Concluding Remarks & Future Perspectives

6.1

- the combined analysis of ITS strategies
- the application to a real context
- the consideration of an enhanced traffic control method (on-line)
- the ‘implicit’ simulation of travellers’ reaction to the information

- enhanced feedback based gating control
- the integration with connected vehicles
- hybrid control (centralised + decentralised)
Thank you for your attention

- Questions?
- Suggestions?
- Comments?