CONGESTION PRICING POLICIES: ANALYSIS AND DESIGN FOR THE REAL CASE STUDY OF ROME

Authors:
Ernesto Cipriani, Livia Mannini
Barbara Montemarani, Marialisa Nigro,
Marco Petrelli.
"Pricing Policies" are all those measures that require motorists to pay a sum to use a road space.

Main objective → to link road transport externalities directly to travelers producing them.

Road pricing policies can be classified according to different aspects, such as:
METHODOLOGY

1. Definition of the scenarios in terms of the project variable (FEE)
2. Scenario simulation (based on a multimodal transport assignment)
3. Computation of Network Statistics (RM, VEH-KM, VEH-H, V_m, E)
4. Definition of O.F & comparison between K scenarios

O.F.: $C_{TOT,k} = \gamma \cdot CA_k + \alpha \cdot E_{tot,k} + \beta \cdot C.CONG_k \quad k=1,2,...,K «scenarios»$

with:
$CA_k(VEH-KM_{pubTr}, VEH-H_{pubTr}, C_{management})$ $C.CONG_k (VEH-KM_{priv}, VEH-H_{priv})$
STUDY CASE (CITY of ROME)

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>ROME</th>
<th>PROVINCE</th>
<th>TOT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPED</td>
<td>50.2%</td>
<td>65.1%</td>
<td>50.2%</td>
</tr>
<tr>
<td>Pub.T. VEHIC</td>
<td>15.4%</td>
<td>8.5%</td>
<td>15.4%</td>
</tr>
<tr>
<td>PEDESTR.</td>
<td>28.8%</td>
<td>25.8%</td>
<td>28.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% VALUES</th>
<th>ABSOLUTE VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL TRIPS</td>
<td>577,424</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T. AREA [KMQ]</th>
<th>POP.</th>
<th>EMPLOY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROME</td>
<td>1285</td>
<td>2.9 M</td>
</tr>
<tr>
<td>PROVINCE</td>
<td>4071</td>
<td>1.4 M</td>
</tr>
<tr>
<td>TOT.</td>
<td>4.3 M</td>
<td>4.3 M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED AVERAGE [Km/H]</th>
<th>MIN</th>
<th>MAX</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROME</td>
<td>10</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>PROVINCE</td>
<td>56</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Figura 4.2 Rappresentazione flussi di scambio (hdp mattina); fonte: PGTU di Roma
HYPOTHESIS OF CORDONS:

Area of Cordon 1 = 22 km² ca.
7% Inhabitants, 22% Employees

Area of Cordon 2 = 40 km² ca.
14% Inhabitants, 34% Employees
ASSESSMENT of the POLICY EFFECT (in terms of MODAL SHIFT):

- $\Delta% \, D_{VEH} \, \text{inside the Ring}: \, -15\%$
 (in the Urban Context)
- $\Delta% \, D_{VEH} \, \text{inside the Ring}: \, -16,5\%$
 (in the Provincial Context)
- $\Delta% \, D_{VEH} \, \text{City of Rome}: \, -2\%$
- $\Delta% \, D_{VEH} \, \text{Province of Rome}: \, -1\%$
- $\Delta% \, D_{VEH} \, \text{Suburban Zones}: \, +1\div2,5\%$
 (in a single zone)
NETWORK EFFECTS
SINGLE FEE FOR ALL USERS (CORDON 1 & CORDON 2)

\[FEE = 4 \times FEE_{BASE \ YEAR} \]

\[FEE = FEE_{BASE \ YEAR} \]

\[FEE = \frac{FEE_{BASE \ YEAR}}{4} \]

PRICING FOR C2 + PENALTIES FOR USERS WITH HIGH ACCESSIBILITY (RAIL RING)

Only users served by Rail System:

- Penal. = \(4 \times FEE_{BASE \ YEAR} \)
- Penal. = \(3 \times FEE_{BASE \ YEAR} \)
- Penal. = \(2 \times FEE_{BASE \ YEAR} \) (for ALL users)
DEFINITION OF OTHER SCENARIOS

ZONING WITH AREAS SERVED BY RAIL SYSTEM:

[Description of the map showing different zones and areas served by the rail system]
RESULTS

COMPARISONS IN TERMS OF MODAL SHIFT: ATTRACTED TRIPS (URBAN RAIL RING: Cordon 2)

- **MODAL SHIFT (%) - PRIVATE MODE**
 for ATTRACTED TRIPS (C2)

- **MODAL SHIFT (%) – PRIVATE MODE**
 for ATTRACTED TRIPS inside C2

- **MODAL SHIFT (%) - TRANSIT MODE**
 for ATTRACTED TRIPS (C2)

- **MODAL SHIFT (%) – TRANSIT MODE**
 for ATTRACTED TRIPS inside C2
RESULTS

COMPARISONS IN TERMS OF MODAL SHIFT: GENERATED TRIPS (URBAN RAIL RING: Cordon 2)
RESULTS

COMPARISONS IN TERMS OF «O.F.» VALUES:

\[O.F.: \ C_{TOT,k} = \gamma \cdot C A_k + \alpha \cdot E_{tot,k} + \beta \cdot C.CONG_k \]

\[k=1,2,...,K \text{ «scenarios»} \]

OF TREND (Urban Rail Ring – C2)

Increase of private modal shift

- «Auto» for those OD pairs located on opposite sides with respect to the pricing area;
- «Moped» on short distances;

despite a total reduction can be observed at whole province level.

In order to appreciate the same phenomenon in the railway ring, the fee should be further increased.
RESULTS

COMPARISONS IN TERMS OF «O.F.» VALUES:

OF TREND: C₂ + PENALTIES FOR OD WITH HIGH ACCESSIBILITY

\[F.M.O.: C_{TOT,k} = \gamma \cdot C_A + \alpha \cdot E_{tot,k} + \beta \cdot C_{Cong_k} \]

C. CONG. TREND: C₂ + PENALTIES FOR OD WITH HIGH ACCESSIBILITY

\[C_{Cong_k}(VKM_{tot}, VH_{tot}) \]

E TREND: C₂ + PENALTIES FOR OD WITH HIGH ACCESSIBILITY

CA TREND: C₂ + PENALTIES FOR OD WITH HIGH ACCESSIBILITY

\[C_{Ak}(VETT-KM, VETT-H, C_{gestione}) \]
Assessment on policy effectiveness, in terms of modal shift, showed that:

- the adoption of the fee essentially affects the pricing zones and the effect is the greater the higher the amount of the fee applied;

- in external areas, especially for high distance origin-destination pairs, there is an increase in private demand, due to the unloading of vehicle’s flow on specific routes;

 The FO study indicates that the problem is complex !!

In terms of reducing atmospheric emissions, the overall benefit for the city is quantified:

- in 2% of reduction if analysed in the whole city;
- in 25% of reduction if analysed in the downtown areas subject to charging.
CONCLUSIONS & DISCUSSIONS (2/2)

Additional aspects that should be taken into account to ensure that such a mobility management application is effective include:

- the ability to implement the pricing policy for concentric areas by modulating the amount of the fee;
- the possibility of charging even the mopeds, so as to avoid a modal split towards this type of vehicle;
- the possibility of reorganizing public transport lines and the upgrading of urban rail lines to a metro service, especially in peripheral areas;
- the ability to use new technologies so that the amount of the fee can be varied according to the actual trips that the user makes.
Thanks for the attention!