A Decision Support System to plan bike mobility interventions

Laboratorio Mobilità e Trasporti - Politecnico di Milano
Luca Studer, Marco Ponti, Maurizio Bruglieri

XXII SIDT National Scientific Seminar
Bari, 14th September 2017
Main goal of cycling planning

Facilitate the development of cycling for different types of trips (systematic, occasional, touristic ...) through interventions that encourage the use of bicycles

Recurring problems:

- BUDGET OF ADMINISTRATIONS OFTEN LIMITED
- UNCERTAINTY IN THE CHOICE OF THE MOST APPROPRIATE TYPE OF INTERVENTIONS
- DIFFICULTY IN LOCATING PRIORITY INTERVENTIONS
Goal of the project:

Implementation of a DSS (Decision Support System) aimed at supporting the administrations in the selection of infrastructure projects to be carried out under conditions of limited resources.

- Characterization of network elements via a Bike Quality Index BQI
- Definition of interventions and admissible final configurations
- Models for the calculation of cycle paths at minimum generalized cost
- Decision-making model and algorithms to determine the optimal set of interventions
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI index
- Evaluation of interventions by means of BQI index
- Demand of cycling movements
- Models for the routes calculation and flows assignment
- Generalized cost of all users
- Optimization model for the selection of interventions
- Available budget or other constraints
- Set of interventions to be implemented
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI index
- Evaluation of interventions by means of BQI index
- Models for the routes calculation and flows assignment
- Demand of cycling movements
- Generalized cost of all users
- Optimization model for the selection of interventions
- Available budget or other constraints
- Set of interventions to be implemented
Characterization of the network by means of a Bike Quality Index

Construction of an index that represents a Bicycle Level of Service:
• for each link (road sections)
• for each node (intersections)

The index is mainly determined by the perception of safety and comfort of the cyclists

The index is built starting from the most significant characteristics of a road section or of an intersection valued by the cyclists
Development of 3 submodels

Distinct formulations relating to alternative conditions of march

\[y_j = c_j + \sum_i \beta_{ij} \cdot x_{ij} \]
Tuning of the 3 submodels:

Survey: Evaluation of movies

Physical and functional characteristics of elements reproduced by movies

average ratings [Y]
1 2 3 4 5 6
A B C D E F

Redefinition of the explanatory variables [X']

METODOLOGY:
Selection of significant variables [X] by backward elimination based on the t-test on the parameters and on cross-validation:
- Prevent over-parameterization (overfitting)
- Ensure statistical goodness of the least-squares linear regression

estimated parameters [C, β]

Final Model
Overall formulation of Bike Quality Index:

\[
BQI = \begin{cases}
4.375 - 0.168 \cdot L_e + 0.794 \cdot \frac{F_1 + 0.15 \cdot F_2}{1000} + 0.220 \cdot \ln(V - 29) + 0.789 \cdot f_{parc} - 0.805 \cdot F_{cicl} + 0.876 \cdot F_{pavn} \\
4.609 - 0.892 \cdot L_c + 0.605 \cdot f_{parc} - 0.605 \cdot F_{col} + 1.089 \cdot F_{dip} \\
3.718 + 0.309 \cdot \frac{F_{tot}}{1000} + 1.147 \cdot f_{confr} - 1.012 \cdot f_{cicl} - 0.283 \cdot F_{L} + 0.820 \cdot F_{pavn}
\end{cases}
\]

(MAC) (MAP) (MN)
A Decision Support System to plan bike mobility interventions

BQI_{MAC} = 4,375 - 0,168 \cdot L_e + 0,794 \cdot \frac{F_1 + 0,15 \cdot F_2}{1000} + 0,220 \cdot \ln(V - 29) + 0,789 \cdot f_{parc} - 0,805 \cdot F_{cicl} + 0,876 \cdot F_{pav}

Le = \textbf{width} of the outside lane of traffic [m]
F_1 = \textbf{flow} of motorized traffic in the outside lane (adjacent to the cyclist) [veic/h]
F_2 = \text{flow of motorized traffic in the opposite direction [veic/h]}
V = \text{average speed of motorized traffic [km/h]}
f_{parc} = \textbf{parking} on the road: % occupancy [0 \div 1]
F_{cicl} = \text{presence of bike lane bordered only by horizontal strip [0|1]}
F_{pav} = \textbf{pavement}: presence of pav. class 3 (cobbles) [0|1]
A Decision Support System to plan bike mobility interventions

\[
\text{BQI}_{\text{MAP}} = 4,609 - 0,892 \cdot L_c + 0,605 \cdot f_{\text{parc}} - 0,605 \cdot F_{\text{col}} \\
\quad + 1,089 \cdot F_{\text{dip}}
\]

\(L_c = \text{width} \) of bike lane [m]

\(f_{\text{parc}} = \text{parking} \): % occupancy of the line adjacent to the cyclist \([0 \div 1]\)

\(F_{\text{dip}} = \text{presence of obstructions or discontinuities} \) \([0 \div 1]\)

\(F_{\text{col}} = \text{coloration} \): presence of background staining of the track \([0 \div 1]\)

Sub-model

Protected bike lane (MAP)

Figure 14: Segnale strada ciclabile - Germania

In Olanda, invece, vengono proposte ... - Give cycling a push, 2011

Figure 15: Strada ciclabile e sue caratteristiche – Olanda (Presto – Give cycling a push)
A Decision Support System to plan bike mobility interventions

\[BQI_{MN} = 3.718 + 0.309 \cdot \frac{F_{tot}}{1000} + 1.147 \cdot f_{conf} - 1.012 \cdot f_{cic} - 0.283 \cdot F_L + 0.820 \cdot F_{pav} \]

\(F_{tot} = \) total flow of motorized traffic in input [veic/h]
\(f_{cof} = \) probability of conflict with motorized traffic [0 ÷ 1]
\(f_{cic} = \) factor of presence of cycle lanes [0 ÷ 1]
\(F_L = \) width factor of the branches (>4.5 m) [0 | 1]
\(F_{pav} = \) pavement: presence of pav. class 3 (cobbles) [0 | 1]
Bike Quality Index classes

BQI (1-6) [Diagram]

Bicycle Level of Service (LoS)

- A: Extremely high
- B: Very high
- C: Moderately high
- D: Moderately low
- E: Very low
- F: Extremely low
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI index
- Evaluation of interventions by means of BQI index
- Demand of cycling movements
- Models for the routes calculation and flows assignment
- Generalized cost of all users
- Optimization model for the selection of interventions
- Available budget or other constraints
- Set of interventions to be implemented
Configuration of a network element (link or intersection)

It’s the set of physical and functional characteristics at a given moment.

It’s defined by the values assumed by each of the explanatory variables of the BQI index.

Starting configuration $j_{a, start}^i$

Possible interventions

Cost: $m_{a,i}$
(function of starting and final configuration)

Set of final configurations $j_{a, final}^i$

- Final configuration $j_{a, final}^1 = j_{a, start}^i$
- Final configuration $j_{a, final}^2$
- Final configuration $j_{a, final}^3$
- Final configuration $...$
Admissible final configurations

The set of final configurations of a network element is limited by some constraints and criteria:

- technical constraints that characterize the element itself (e.g. limited overall width of the road section)
- planning, strategic, economic constraints (e.g. funds available only for the creation of protected cycle tracks)
- avoid worsening the bicycle quality index of each element
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI index
- Evaluation of interventions by means of BQI index
- Optimization model for the selection of interventions
- Generalized cost of all users
- Available budget or other constraints
- Set of interventions to be implemented
- Models for the routes calculation and flows assignment
- Demand of cycling movements
A Decision Support System to plan bike mobility interventions

Evaluation of interventions through the abacus

Each starting (pre-intervention) and final (post-intervention) configuration can be evaluated by calculating the relative BQI index: \(BQI_{a}^{\text{start}} \) and \(BQI_{a,j}^{\text{final}} \).
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI Index
- Models for the routes calculation and flows assignment
- Demand of cycling movements

- Evaluation of interventions by means of BQI Index
- Generalized cost of all users

- Optimization model for the selection of interventions
- Available budget or other constraints

- Set of interventions to be implemented
A Decision Support System to plan bike mobility interventions

Model for the computation of the minimum generalized cost path

∀ o, d pair:

\[p_{od}^{c_{min}} = \arg\min_{p \in \text{PATHS}_{od}} \left[\lambda_1 \cdot \left(\sum_{a \in A_p} BQI_a \cdot l_a + \sum_{n \in N_p} BQI_n \cdot l_n \right) + \lambda_2 \cdot \left(\sum_{a \in A_p} t_a + \sum_{n \in N_p} t_n \right) \right] \]

- \(p_{od}^{c_{MIN}} \) minimum generalized cost path
- \(l_a, l_n \) length of arc \(a \) and node \(n \) (crossing)
- \(t_a, t_n \) travel time of arc \(a \) and node \(n \) (crossing)
- \(A_p, N_p \) sets of all arcs and nodes of path \(p \)
- \(BQI_a, BQI_n \) bike quality index of arc \(a \) and node \(n \)
- \(\text{PATHS}_{od} \) set of all paths between \(o \) and \(d \)

- **Hypothesis:** the user wants to minimize both the travel time and the BQI index
- **Weights** \(\lambda_1, \lambda_2 \) must be tuned in advance
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI index
- Models for the routes calculation and flows assignment
- Demand of cycling movements

- Evaluation of interventions by means of BQI index
- Generalized cost of all users

- Optimization model for the selection of interventions
- Available budget or other constraints

- Set of interventions to be implemented
Cycling O/D matrix and calculation of generalized cost of all users

Known for each o/d pair:
- the minimum generalized cost of the travel
- users’ flow (from o/d matrix)

it’s possible to calculate the generalized cost of all the users:

$$C^{GEN\ TOT} = \sum_{o,d \in OD\ pairs} f_{od} \cdot \left[\lambda_1 \cdot \left(\sum_{a \in A} c_{MIN}^{p_{od}} BQI_a \cdot l_a + \sum_{n \in N} c_{MIN}^{p_{od}} BQI_n \cdot l_n \right) + \right. \left. \lambda_2 \cdot \left(\sum_{a \in A} c_{MIN}^{p_{od}} t_a + \sum_{n \in N} c_{MIN}^{p_{od}} t_n \right) \right]$$

$p_{od}^{c_{MIN}}$ minimum cost path

$OD\ pairs$ set of all od pairs

f_{od} flow between o and d

$N_{p_{od}^{c_{MIN}}}$ set of all nodes of path $p_{od}^{c_{MIN}}$

$A_{p_{od}^{c_{MIN}}}$ set of all arcs of path $p_{od}^{c_{MIN}}$
A Decision Support System to plan bike mobility interventions

- Interventions and final configurations
- Characterization of network elements using BQI index
- Models for the routes calculation and flows assignment
- Demand of cycling movements
- Evaluation of interventions by means of BQI index
- Generalized cost of all users
- Optimization model for the selection of interventions
- Available budget or other constraints
- Set of interventions to be implemented
Optimization model for the selection of interventions

Goal:

determine the set of interventions on road sections and on intersections that minimizes the overall generalized cost of travels:

\[\text{minimize } C^{\text{GEN TOT}} \]

subject to a main constraint:

- fixed total budget: \[\sum_{a \in A, j \in J_{a}^{\text{final}}} m_{a,j} \leq BUDGET \]
- and/or maximun number of interventions: \[\sum_{a \in A, j \in J_{a}^{\text{final}}} z_{a,j} \leq N_{int} \]
Mathematical Programming formulation

\[y_{a,j} = \begin{cases} 1 & \text{if intervention } j \text{ on arc } a \text{ is performed} \\ 0 & \text{otherwise} \end{cases} \]

\[x_{a}^{od} = \begin{cases} 1 & \text{if arc } a \text{ is traveled in the } od \text{ path} \\ 0 & \text{otherwise} \end{cases} \]

\[
\text{minimize} \sum_{od \in ODpairs} f_{od} \cdot \left(\lambda_1 \sum_{a \in \bar{A}} l_a \left(BQI_{a,\text{start}}^{\text{start}} - \sum_{j \in I_{a}^{\text{final}}} \Delta BQI_{a,j} y_{a,j} \right) x_{a}^{od} + \lambda_2 \sum_{a \in \bar{A}} t_a x_{a}^{od} \right)
\]

subject to: \[\sum_{j \in I_{a}^{\text{final}}} y_{a,j} \leq 1 \quad \forall a \in \bar{A} \]

subject to budget constraint and path constraints

where intersection are represented as arcs and so: \[\bar{A} = A \cup N \]
APPLICATION TO A STUDY AREA

Milano (City Centre + “Città Studi”)
BQI index for carriageway and protected bike lanes
Demand: use of BikeMi (bike sharing) O/D
Assignment of cycling trips:
Determining the ranking of the best interventions:

<table>
<thead>
<tr>
<th>type of intervention</th>
<th>link</th>
<th>% improvement of $C_{\text{GEN TOT}}$</th>
<th>increase of cyclists on the arc [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycle-pedestrian area creation</td>
<td>via Torino</td>
<td>0,81</td>
<td>63</td>
</tr>
<tr>
<td>cycle-pedestrian area creation</td>
<td>via Mazzini</td>
<td>1,52</td>
<td>64</td>
</tr>
<tr>
<td>cycle-pedestrian area creation</td>
<td>via Rastrelli</td>
<td>2,14</td>
<td>103</td>
</tr>
<tr>
<td>cycle-pedestrian area creation</td>
<td>via Cordusio</td>
<td>2,72</td>
<td>51</td>
</tr>
<tr>
<td>cycle-pedestrian area creation</td>
<td>Largo Cairoli</td>
<td>3,3</td>
<td>41</td>
</tr>
</tbody>
</table>
Determining the ranking of the best interventions only on cycle paths

<table>
<thead>
<tr>
<th>type of intervention</th>
<th>link</th>
<th>% improvement of $C_{GEN \ TOT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycling track continuity restoration</td>
<td>via Molino delle Armi</td>
<td>0,07</td>
</tr>
<tr>
<td>cycling track continuity restoration</td>
<td>via Francesco Sforza</td>
<td>0,12</td>
</tr>
<tr>
<td>cycling track coloring</td>
<td>via Carducci</td>
<td>0,15</td>
</tr>
</tbody>
</table>
Thank you for your attention

For any question luca.studer@polimi.it